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Eigenvalues Of Covariance Matrix For Two-Source Array processing

S.I. Chou
Navat, OQcraN Systems CENTER
SAN Dieago, CA 92152-5000

Abstract

Figenvalue weighting appears in some noise subspace
mcthods, in parantetric signal subspace fitting methods,
and in nonparametric subspace adaptive nulling beamform-
ing. For a two-source array processing scenario, normalized
cigenvalues’ expressions A; and Ay are reduced to forms de-
pending only on a real triplet: phase-dependent variable £,
phase-independent variable 5, and power ratio 2+, (£,7) is
confined to an isosceles-like region. We characterize

e this isosceles-like region and the many-to-one mapping
from the Cartesian product of the temporal and spatial
correlation unit-disks onto this region, and

e the behavior of the eigenvalues and their ratio as func-
tions of the real triplet both analytically and graphi-
cally with respect to array processing.

1. Introduction

In this paper, we discuss some stress measure to array
processing algorithms apphied to scenarios with two sources.
The word "stress” for ascenario is used to indicate the difli-
culty that an algorithm has in determining the direction of
arrival of each of the two sources. Schmidt’s dissertation (1]
qualitatively pointed out three stressing factors to an array
processing algorithm:

1. For small or medium-sized scnsor arrays, the resolu-
tion is not sufficiently high so we can have unresolved

arrivals.

2. Furthermore, high or 100% source correlation such as
from multipaths will cause ill-conditioning or rank de-
ficiency of the noise-free data covariance matrix.

3. The other stress factor to a direction-finding algorithm
or scenariois the strength ratio between the two signals,

Here, we use eigenvalue ratios to quantitatively combine the
three stressing {actors. Eigenvalues in weighting expressions
appear in three categories of array processing algorithms:

e in noise subspace methods [2,3 4],

e in parametric signal subspace fitting methods [4,5,6,7,
8,9,10] or its associated nonparametric subspace beam-
forming {11}, and

e in nonparametric subspace adaptive nulling beamform-

ing [12,13].

Only (2] is about weighted noisc-eigenvectors with weights
involving the corresponding noise eigenvalues. See the re-
cent result on this in [3]. All others use weighted signal
eigenvectors with weights involving the corresponding sig-
nal eigenvalues.

We give special treatment for equal power arrivals be-
cause of its many unique characteristics and its importance
i real applications.

The analytical treatment begins by reviewing the ex-
pressions of the noise-free eigenvalues of the quadratic char-
acteristic equations of the non-Hermitian product of the
temporal and spatial correlation matrix given in Mudson’s
text[14, pp. 52-55]. The ecigenvalues are normalized with
respect to the product of the number of sensors and the sen-
sor level power of the weaker source 7, e, mp > 72, The
normalized large and small eigenvalues expressions A, and
Az are reduced to forms depending only on the real triplet
(&1, %), Here, }: is the power ratio hetween the strong
to weak sources at the sensor level. The real patr (€, 1) are
defined in terms of the normalized temporal and spatial co-
cfficients p and ¢ respectively with each constrained to a
unit-disk through

n=(1- o)1 =|p]*),

& = Re(pg®) = |Ipll¢] cos(arg p — arg ¢).

Using our notation, the normalized ecigenvalues assume the
following form

/\l _ 1 m Ty §‘C
(%) = alZrvd

2

(3 41+ ()]

Before finishing the introduction of symbols and defini-
tions, we point out the importance of the sensor coordinate
origin. When two arrivals are 100% correlated, the phase
difference between the two-source signals plays an impor-
tant role. The specification of this variable depends on the
choice of the coordinate origin. Frequently, performance
such as the Cramer-Rao Lower Bound (CRLB) is plotted
against this variable. If two different origins are used, the
same results can be seen differently but are equivalent with
a horizontal shift and possibly with the help of 2r-modulo
wrap-around. Naturally, the covariance matrix and their
eigenvalues are not dependent on the choice of the origin,
hut the expressions for the phase angles of both the steering
vectors and complex source amplitudes of the signals are.

In the special case of plane waves, an array is called
pairwise symmetric o inverse symmetric [15) if for each
sensor located away from the origin at position coordinates
(z:,vi, %) there is also a sensor located at (—zi, —yi, —z).
The inner product of two steering vectors for plane waves
impinging onto pairwise symmetric arrays is real. For such
case, the usual two-dimensional unit-disk associated with
spatial correlation ¢ degenerates into a one-dimensional one.
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< Than, the angle ditference between the temporal and spa-
tial correlation coellicients is reduced to thie temporal phase
difference between the two arrivals measured at the origin
of the symmetric array. While the discussions of cigenval-
ues in Lhis report are applicable to generic steering vectors,
we call 5 the phase-independent variable and € the phase-
dependent variable for convenience even though such names
were motivated by the special case of plane waves impinging
onto pairwise symmetric arrays.

2. An Isosceles Right-Triangle-Like Region

The phase-independent variable n depends only on the
magnitude of p and ¢. The phase-dependent variable € de-
pends also on the angular positions of p and ¢. The mapping
from the complex pair (p, @) to the real pair (€, ) is many to
one. The range of this mapping is an isosceles right-triangle-
like region bounded on its left and right by two symmetric
parabolas, n = (£ £1)%, and down below by a straight basec-
line, n = 0. We note the zcro slope of cach parabola where
it meets the straight line and the 90° angle that the two
parabolas intersect each other. We characterize this region
with respect to the temporal and spatial correlation coefli-
cients of array processing scenarios in Figures 1 and 2.

We will sece later that among the three parameters
(€,n,m1/ma) appearing in the cigenvalues’ expressions, 7
1s the most important one. In the following, we use TFig-
ure 1 to characterize the many-to-one mapping from the
Cartesian product of the two unit-disks onto the isosceles-
like region with respect to . We note that for given 7,
max({pl, |¢]) = /1 — /1. Therefore, the apex point (0,1)
corresponding to 17 = 1 can only come from the two centers
of the mnit-disks, 1.e., p = ¢ = 0. As 3y decreases from 1
to 0, i.e., we move from the apex towards the baseline, we
shade the part of the Cartesian product of the two unit-
disks mapped into the correspondingly shaded area of the
isosceles-like region. Therefore, as the shaded area of the
1sosceles-like region expands from the apex towards thie base-
line, the shaded areas of the two unit-disks expand from the
centers toward the unit circumferences.

When we move one-fourth of the way toward the base-
line, ie., 7 > 0.75, we find max(|p|,|4]) = V1 -+V0.75 ~
0.36. For two uncorrelated plane wave arrivals impinging on
a uniform linear array, the first sidelobe peak has a height
of |[¢| = v0.05 = 0.22. At n = 0.75, the two interferers
are already within a beamwidth of each other. Let us shade
the cortesponding range and domain of this many-to-one
mapping using 45° hatching lines for this n > 0.75 region.

Similarly, when we have moved hallway toward the
baseline in the isosceles-like region n > 0.50, we find
max(|p],|¢]) = V1-v05 =~ v0.3 ~ 0.54. Let us over-
lay onto the earlier picture by shading the corresponding
range and domain using offset 45° hatching lines for this
n > 0.50 value. We note that the pieviously 45° hatched
region are double-hatched now. For any point in the in-
cremental area of the isosceles-like region corresponding to
the singly 45° hatched but not double-hatched area, i.e.,
0.75 > n > 0.50, at least one of the originating p or ¢ must
be located in the correspondingly shaded incremental annu-
lus, i.e., 0.36 < !p| or [¢] < 0.54.

When we move thiree-fourth of the way toward the base-
line, i.e., 7 > 0.25, we find max(|p}, l¢]) = V1 - V025 ~
0.7. The two interferers are now within half of the half-
power beamwidth of each other.

We also note that = (1= |¢]*)(1 ~[p]*) is the height of
the unshaded trapezoidal-like region. We can associate 72y
as the product of the areas of the two unshaded annulus re-
gions, m(1={¢1*) and m(1=|p|*). As this height reduces from
110 0, i.c., the unshaded trapezoid decreases from the origi-
nal whole isosceles all the way to the zero thickness bascline,
at least one of the corresponding white annuli shrinks from
the original unit-disk to a zero width ring.

When the scenario is stressful, n is small, the corre-
sponding annuli witl unit outer radius are thin. The arca
of the temnporal correlation p annulus can be approximated

by
(1= 1pl*) = #(1+ |p))(1 = |pl) = 2n(1 = |p]).

Suppose the temporal correlation coeflicient has a magni-
tude of 99%, then the thickness of the p annulus is 0.01.
The area of the annulus can be approximated by 27(0.01)
by letting the mean circumference of the annulus assume the
outer circumference of the unit-disk, 2r. The approximation
is 99.5% accurate. If the spatial correlation coefficient has
a magnitude of 90%, then the thickness of the ¢ annulus is
0.1, the area of the annulus can be approximated by 27(0.1).
The approximation accuracy is 95%. We see that a combi-
nation of the high temporal and spatial correlations yield
an 1 of approximately (=20 4 3) + (—=10+ 3) = —24 dB.

Next we use Figure 2 to characterize some special po-
sitions in the isosceles region. TMudson’s textbook(14, pp.
52-55] presented 4 out of the 17 characterizations shown
there. These 4 cases are denoted by the asterisks.

The two eigenvalues are equal if and only if what is in-
side the radical of the ecigenvalue equation vanishes. It can
be shown that for this to be true we must have m/my = 1
and that £ and n must be on the left parabola of the
isosceles-like region. The common eigenvalue value they
share is

NEQ+O)=(1+8) = /.

3.
Characterizing Eigenvalues and their Ratio

We characterize the behavior of the eigenvalues and
their ratio :\TL as functions of the real triplet (&, n, %) It is
useful to discuss the expressions for the cigenvalue and their
ratio % for the specinl cases at the apex, the baseline, and
the vertical axis. But instead, we characterize the special
case of equal-strength arrivals and then the general case will
be touched upon only lightly at the end.

The small eigenvalue is shown to diminish qualita-
tively and quantitatively for two-arrival scenarios increas-
ingly stressed with high temporal and/or spatial correla-
tions. The special case of equal strength -}: = 0 dB arrivals,
also important in low-angle radar tracking, shares many rich
structures of general E: It has several additional unique

features for signal eigenvalues’ ratio %: important in array
processing.




:'l'lm special case of equal strength ’—;‘; = 0 18 arrivals
shares the following common features ol general % power
ratios: straight line contours for constant cigenvalue A’s in
Figure 3, hyperbolic A slices for constant phase-independent
variable ip's in Figure 4, parabolic A slices for constant phase-
dependent vartable €'s in Figure 5.

IHlowever, we caution that unless special elfort 1s made
in plotting results, the two displayed surfaces or curves may
not always meet at the supposed places. This is because the
boundary curves delining parabolas in the £ and 5 plane, in
general, do not pass through the grid points used in the €
and 7 plane.

The plots of the same information or function, using
direct scale and dB scale in the vertical axis have their indi-
vidual merits. The direct-scale versions show the parabolic
and hyperbolic sections as well as the straight line contours
in their natural coordinates as derived from the analytical
studics. Versions using the dB scale better illustrate the
multiplicative dependence of the eigenvalues on some of the
three independent parameters. In addition, the effect of the
smallest dominant eigenvalue is relative to the threshold set-
ting, which is frequently expressed in dB scale; the condition
number can be exhibited inore compactly in this way.

As 7 approachies 0, the small eigenvalue A, and the
eigenvalue ratio %L tend toward - and + oo dB, respec-
tively. Similarly, as  approaches () for the equi-power case,
%1; = 0dDB, both the upper A; and lower A5 hyperbolas tend
toward their asymptotes intersecting at —oco dB. Since we
cannot display +oo dB, we choose to stop at a small value
of n = —13 dB, which corresponds to spatially orthogonal
arrivals with temporal correlation of 97.5%, or temporally
uncorrelated arrivals with a % fractional beamwidth spacing
for a uniform lincar array.

We first display for power ratio % = 0 dB the slices
of the two signal eigenvalues Ay and Ay in dB for constant
phase-independent variable n in Figure 6, and for constant
phase-dependent variable € in Figure 7. While the parabola
sections are all translation copies of each other for given 7t
values in the direct scale cocrdinates, their images in the dB3
scale are qualitatively different because of the nonlinear na-
ture of the logarithmic function, especially near zero, which
is so important for our study. Next their ratio, which is the
difference in dB of the large and small signal eigenvalues,
are displayed in Figures 8 and 9.

We expect the slices of the eigenvalue ratio i\* surface
for all constant n, phase-independent variable, and for neg-
ative constant £, phase-dependent variable, to intersect the
0-dB abscissa axis. Again, they do not appear to be so only
because of the coarse grid systems used in making these
plots, i.e., the left boundary curve of the isosceles region
does not fall on the grid points.

Mesh plots and parabolic contours for eigenvalue ra-
tio f:—t are shown in Figures 10 and 11 respectively. The
contours of the eigenvalue ratio % = 1| form a one-
parameter family of parabolas having their vertices colo-
cated at (£,77) = (—=1,0), i.e., at the lower left corner of the
isosceles-like triangle and their common tangent the base-
line n = 0. This family includes the left boundary of the
isosceles-like triangle and the baseline. Because the contours
of the eigenvalue ratio % = { pass through the lower left

corner of the isosceles-like triangle, this corner s a point of
discontinuity for the cigenvalue ratio ;—L for the special case
of equal strength 2 = dB. For example, the two eigenval-
ues are equal over the left paraholic boundary of the isosce-
les right-trinngle-like region. Purthermore, the two equally
dominant eigenvalues go down to zero jointly so that the
condition number stays as unity throughout. That is, the
condition numbers are the lowest possible there. However,
both cigenvalues tend to zero as n tends to zero, ie., the
bascline of the region. The hmit of %‘: approaching from the
bascline of the isosceles region is oo, while that approaching
from the left boundary curve of the isosceles region is 0.

For the equi-powered case, the destructive interference
scenario point is at the left apex of the isosceles region. Both
cigenvalues are zero and the cigenvalue ratio % at this point
is of the 0/0 form. This point corresponds to the total can-
cellation of signals at the sensor element level. The total
cancellation happens not only at the center of the array but
at every sensor. The two steering vectors coinride and the
temporal waveforms negate each other completely. Con-
sider two strong sources behaving this way. As the power is
measured by turning off one source at a time, so the equal
power are considered as high and CRLB and asymptotic
results apply when noise is taken into consideration,

We focus attention to the condition number’s behavior
over the vertical axis £ = 0 of the isosceles region. For the
special case of equal strength %‘; = 0 dB, there is an extra

6 dB for signal eigenvalues’ ratio %1 over the vertical axis
&€ = 0 accounting for the presence of an infinite slope of A's
with respect to n at the apex for the equal-power arrival
case. This is reflected in the following two approximations.
When %’; > 10 dB, we have

A
ﬁ(in dB) =~ (—Z—;—)(in dB) - n(in dB).

When }: ~ 0 dB and 5 is less than 0.10 (or -10 dB), we

have

A
ZLl(in dB) & —n(in dB) +6.
Az

See Figures 12 and 13.

The variation of signal cigenvalue ratio % across the
phase-dependent variable £ is not significant. For the special
case of equal strength ;i: = 0 dB, there is a 4-time or 6 dB

increase on the eigenvalue ratio % for highly correlated equi-
power arrivals both temporally and spatially from changing
the phase of the source correlation or the angle difference
between the two unit-disk vectors from 90° to 0°.

As power ratio % increases from unit value, the vari-
ation of the large eigenvalue A is essentially along the di-
rection of the horizontal phase-dependent variable £. The
smaller eigenvalue A, is independent of both the horizon-
tal phase-dependent variable £ and I near the baseline
for large 71 but is a strong function of the vertical phase-
independent variable 1. The effect of % is essentially only
felt by the large eigenvalue which is not sensitive to whether
the scenario’s (€, 1) coordinate is close to the baseline, ie,,
whether the arrivals are correlated or close to each other as
far as its order of magnitude is concerned.

We have used these results for assessment of scenarios
in [16] for which this paper is a synopsis.




4. Conclusion

The main contribution of this work is a manageable
prcsentatlon of a compact map showmg the three functions,
A1, A2, and I‘L over all possible scenarios. This enables one
to see the relat.we positions among dillerent scenarios. We
also present sonie casy-to-reinember formulas that enable
one to exercise back-of-envelope assessment of scenarios.
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